
www.manaraa.com

Building Diverse Computer Systems
�

Stephanie Forrest �
Dept. of Computer Science
University of New Mexico
Albuquerque, NM 87131

forrest@cs.unm.edu

Anil Somayaji �
Dept. of Computer Science
University of New Mexico
Albuquerque, NM 87131

soma@cs.unm.edu

David H. Ackley
Dept. of Computer Science
University of New Mexico
Albuquerque, NM 87131

ackley@cs.unm.edu

Abstract

Diversity is an important source of robustness in biological
systems. Computers, by contrast, are notable for their lack
of diversity. Although homogeneous systems have many ad-
vantages, the beneficial effects of diversity in computing
systems have been overlooked, specifically in the area of
computer security. Several methods of achieving software
diversity are discussed based on randomizations that re-
spect the specified behavior of the program. Such random-
ization could potentially increase the robustness of software
systems with minimal impact on convenience, usability, and
efficiency. Randomization of the amount of memory alloc-
ated on a stack frame is shown to disrupt a simple buffer
overflow attack.

1 Introduction: Diversity is valuable

Diversity is an important source of robustness in biolo-
gical systems. A stable ecosystem, for example, contains
many different species which occur in highly-conserved fre-
quency distributions. If this diversity is lost and a few spe-
cies become dominant, the ecosystem becomes susceptible
to perturbations such as catastrophic fires, infestations, and
disease. Similarly, health problems can emerge when there
is low genetic diversity within a species, as in the case of en-
dangered species or animal breeding programs. The verteb-
rate immune system offers a third example, providing each
individual with a unique set of immunological defenses,
helping to control the spread of disease within a population.

Computers, by contrast, are notable for their lack of di-
versity. Manufacturers produce multitudes of identical cop-
ies from a single design, with the goal of making every
hardware and software component identical. Beyond the

�
In Proceedings of The 6th Workshop on Hot Topics in Operating Sys-

tems, IEEE Computer Society Press, Los Alamitos, CA, pp. 67-72 (1997).�
Current address: MIT Artificial Intelligence Laboratory, 545 Techno-

logy Sq., Cambridge, MA 02139.

economic leverage provided by the massive cloning of one
design, such homogeneous systems have other advantages:
They behave consistently, application software is more port-
able and more likely to run identically across machines,
debugging is simplified, and distribution and maintenance
tasks are eased. Standardization efforts are a further ex-
ample of the almost universal belief that homogeneity is
beneficial.

As computers increasingly become mass-market com-
modities, the decline in the diversity of available hardware
and software is likely to continue, and as in biological sys-
tems, such a development carries serious risks. All the ad-
vantages of uniformity become potential weaknesses when
they replicate errors or can be exploited by an attacker.
Once a method is created for penetrating the security of one
computer, all computers with the same configuration be-
come similarly vulnerable. The potential danger grows with
the population of interconnected and homogeneous com-
puters.

In this paper we argue that the beneficial effects of di-
versity in computing systems have been overlooked, and we
discuss methods by which diversity could be enhanced with
minimal impact on convenience, usability, and efficiency.
Although diversity considerations affect computing at many
levels, here we focus primarily on computer security, and
our emphasis is on diversity at the software level, particu-
larly for operating systems, which are a common point of
intrusion.

Computer security is a growing concern for open com-
puting environments. Malicious intrusions are multiplying
as huge numbers of people connect to the Internet, exchange
electronic mail and commercially valuable data, download
files, and run computer programs remotely, often across
international boundaries. Traditional approaches to com-
puter security—based on passwords, access controls, and
so forth—are ineffective when an attacker is able to bypass
them by exploiting some unintended property of a system.
Finding ways to mitigate such attacks is likely to be an in-
creasing concern for the operating systems community.



www.manaraa.com

Deliberately introducing diversity into computer systems
can make them more robust to easily replicated attacks.
More speculatively, it might also enhance early detection of
timing problems in software and other faults. Today, each
new discovery of a security hole in any operating system
is a serious problem, because all of the installed base of
that operating system—thousands, if not millions, of ma-
chines, running almost exactly the same system software—
may well be vulnerable. An attack script developed on one
machine is likely to work on thousands of other machines.
If every intrusion, virus, or worm had to be crafted explicitly
to a particular machine, the cost of trying to penetrate com-
puter systems would go up dramatically. Only sites with
high-value information would be worth attacking, and these
could be secured using stronger methods. The relevance of
diversity to computer security was recognized as early as
1989 in the aftermath of the Morris Worm, when it was ob-
served that only a few machine types were vulnerable to in-
fection [2]. Yet, this simple principle has not been adopted
in any computer security system that we know of.

2 Strategy: Avoid Unnecessary Consistency

Our goal is to prevent widespread attacks by mak-
ing intrusions much harder to replicate. Can we intro-
duce diversity in a way that will tend to disrupt malicious
attacks—even through security holes that have not yet been
discovered—without compromising reliability, efficiency,
and convenience for legitimate users? We believe that the
answer is yes, because computers today are far more con-
sistent than necessary. For example, all but the lowest-level
computational tasks are now implemented in a high-level
programming language, and for each such program there
are many different translations into machine code that will
accomplish the same task. Each aspect of a programming
language that is “arbitrary” or “implementation dependent”
is an opportunity for randomized compilation techniques
to introduce diversity. Here we extend the term “compil-
ation” beyond its usual meaning to include both load- and
execution-time transformations [1]. Such diversity would
preserve the functionality of well-behaved programs and be
highly likely to disrupt others by removing unnecessary reg-
ularities. We refer to the strict virtual machine implied by
a programming language's semantics as “the box.” As far
as possible all functional properties not required by a lan-
guage's semantics should vary across individuals, a prin-
ciple that we refer to as “surrounding the box with noise.” In
short, when a property is described by a programming lan-
guage as “arbitrary,” that should mean “random,” not “un-
specified but usually constant.”

We have adopted the following guidelines to help us
identify the most promising directions to explore:

1. Preserve high-level functionality. At the user level, the

behavior of different systems should be predictable,
and the input/output behavior of programs should be
identical on different computers.

2. Introduce diversity in places that will be most disrupt-
ive to known or anticipated intrusion methods.

3. Minimize costs, both run-time performance costs and
the cost of introducing and maintaining diversity. We
believe that the latter is likely to be related directly to
where the variations are introduced in the software de-
velopment process. A load-time modification is likely
to be less expensive than a compile-time modification
which in turn is less expensive than requiring a de-
veloper to write multiple versions of application code.

4. Introduce diversity through randomization. Tech-
niques based on prior knowledge of the semantics of
the property being varied would also be possible, but
they are unlikely to scale as well as methods based on
randomization.

3 Possible Implementations

There are a wide variety of possible implementation
strategies for introducing diversity. In this section, we dis-
cuss several of these and their implications for security. Our
emphasis is on variability that can be introduced into soft-
ware between the time that the software is written and when
it is executed, and as we mentioned earlier, we believe that
variations introduced late in the compilation process are
most likely to be successful. The expense of producing a
unique executable for every different machine is high, and
there are many ways that variations could be introduced
after an executable is written. In our initial explorations,
however, we cover as many different kinds of transforma-
tions as possible. We consider methods ranging from those
that produce variability in the physical location of executed
instructions, the order in which instructions are executed,
the location of instructions in memory at run-time, and the
ability of executing code to access external routines, files,
and other resources.

3.1 Adding or deleting nonfunctional code

Perhaps the simplest method is to insert no-ops or other
nonfunctional sequences of instructions at random loca-
tions in compiled code. Depending on the architecture, this
could potentially affect timing relations at execution-time
and would slightly change the physical location of instruc-
tions. It would also interact with compiler optimizations
that insert no-ops to preserve cache alignment, but it might
be possible to insert the nonfunctional code in such a way
as to respect cache alignment constraints.

2



www.manaraa.com

The timing attacks reported on RSA [3] could potentially
be disrupted using this method, although other remedies for
this particular attack have also been proposed.

3.2 Reordering code

Optimizing and parallelizing compilers use many tech-
niques to improve performance, and some of these could be
used to generate code variations. For example,

1. Basic blocks: Rearrange the basic blocks of compiled
code in random order. This would cause instructions
to be stored in different locations but would not affect
the order in which they are executed. However, basic-
block placement is an important performance optim-
ization [6], so the impact on execution-time efficiency
for this method is likely to be large.

Basic-block rearrangements could potentially disrupt
some viruses. However, most file-infector viruses in-
sert a single jump instruction that transfers control to
the virus code (stored at the end of the program), and
then return control to the original program. Thus, re-
arranging basic blocks in the program segment would
be unlikely to affect this large class of viruses.

2. Optimizations for parallel processing: Many tech-
niques exist for producing blocks of instructions that
can be run simultaneously on multiple processors.
These techniques could be applied to code intended for
execution on a single processor, resulting in a unique
order of execution. We do not know what if any intru-
sion methods this would disrupt. Further, the amount
of variability that could be produced with this method
would be limited to the amount of parallelism that
could be extracted from the original program.

3. Instruction scheduling: Vary the order of instructions
within a basic block, while respecting the data and con-
trol dependencies present in the source code. A pre-
liminary study of the source code for the Linux ker-
nel concluded that the number of different orderings
that could be automatically generated was very high
[5]. As in the case for basic-block rearrangements, in-
teractions with code optimizations would need to be
considered carefully to avoid serious degradations of
execution-time performance.

3.3 Memory layout

There are standard ways of allocating memory when pro-
grams execute and of ordering the components of memory.
These are arbitrary and could be varied in many ways. Here
are a few examples:

1. Pad each stack frame by a random amount (so return
addresses are not located in predictable locations). The
amount of padding could be fixed for each compilation
and varied between compilations, or it could be varied
within a single compilation.

2. Randomize the locations of global variables, and the
offsets assigned to local variables within a stack frame.

3. Assign each newly allocated stack frame in an unpre-
dictable (e.g., randomly chosen) location instead of in
the next contiguous location. This would have the ef-
fect of treating the stack as a heap, which would in-
crease memory-management overhead. Many func-
tional languages have this capability for constructs
such as closures.

Some of these memory-layout schemes would likely disrupt
a pervasive form of attack—the buffer overflow—in which
an input buffer is intentionally overflowed to gain access to
an adjacent stack frame.

There are several potential complications, however, in-
cluding whether and how to preserve Application Binary
Interface (ABI) compatibility, preserving the correct func-
tionality for certain user functions (e.g., the C function “al-
loca”), and how to maintain compatibility with dynamic
libraries. In spite of these complications, we consider
memory-layout modifications to be a promising initial dir-
ection, because buffer overflows are such an important path
of intrusion.

3.4 Other transformations

1. Process initialization: Instructions that are executed
before user code could be varied. Such changes could
involve varying object files such as crt0.o that are
linked into every executable and are responsible for
calling main. Alternatively, it would be possible to in-
troduce variations in the kernel (e.g., in execve) such
that data locations (e.g., command-line arguments and
environment variables) are randomized.

2. Dynamic libraries and system calls: For a program
to run on different machines, it must know the cor-
rect names and arguments for dynamic library routines
and system calls. By varying names and permuting
arguments, binaries could be made machine-specific.
An importation process could also be developed that
would allow users to convert foreign binaries into the
local format. Such changes would make it much harder
for viruses and worms to propagate.

3. Unique names for system files: Varying the names of
common system files so they are difficult for intruding
code to find would be highly effective against attacks

3



www.manaraa.com

targeting these files. However, such changes would
complicate system administration unreasonably unless
authorized administrators were provided with a secure
interface under the inverse mapping (from the random-
ized names back to their standard counterparts).

4. Magic numbers in certain files, e.g., executables: The
type of information contained in many files can be
(at least tentatively) identified by searching for char-
acteristic signatures at the beginning of the file. In-
dividual systems could re-map such signatures to ran-
domly chosen alternatives and convert the signatures
of externally obtained files via an explicit importation
process.

5. Randomized run-time checks: Many successful intru-
sions could be prevented if all compiled code per-
formed dynamic array bounds checking. However,
such checks are rarely performed in production code
because of perceived performance costs. Instead of re-
quiring every program to pay the cost of doing com-
plete dynamic checking, each executing program could
perform some of these checks (potentially a very small
number of them). Which checks were to be performed
could be determined either at compile-time or at run-
time.

4 Preliminary Results

As an initial demonstration of these ideas, we have im-
plemented a simple method for randomizing the amount of
memory allocated on a stack frame and shown that it dis-
rupts a simple buffer overflow attack (item 1 from Section
3.3). Buffer overflow attacks arise because many programs
statically allocate storage for input on the stack, and then
do not ensure that their received input fits within the al-
lotted space. Because C does not require array bounds to
be checked dynamically, overflows can result in the cor-
ruption of variables and return addresses. Buffer overflows
are problematic in the context of programs that run as root
in UNIX, primarily because they provide a way for a non-
privileged user to obtain root access. However, any script
exploiting such vulnerabilities is brittle. To overwrite the re-
turn address, the distance between the start of the buffer and
the function's return address on the stack must be known as
well as the exact location of the code to be executed.

If every compilation produced an executable with a dif-
ferent stack layout, then exploit scripts developed on one
executable would have a low probability of success on other
executables. To change the layout of the stack, we increase
the size of the stack frame by a random amount, by adding
a random amount of space to certain stack slots. Such addi-
tions affect both the stack layout for the modified function
and the exact locations of every function called by it. To

implement this, we made a small modification to gcc (ver-
sion 2.7.2.1), so that it adds a random number of bytes to
any stack allocation request larger than 16 bytes, where the
number of extra bytes is randomly selected to be between 8
and 64 in increments of 8. That is, on each new stack alloc-
ation request (above the 16-byte threshold), a random num-
ber is selected (one of 8, 16, 24, ..., 64) which designates
the number of bytes of padding for that call. This gives one
example of how a compiler could help users create unique
systems, which are vulnerable to attack but vulnerable in
ways different from every other computer.

The idea behind the 16-byte threshold is to minimize the
amount of unnecessary padding. Because the buffer over-
flow technique requires a relatively large buffer in which to
store the intrusion, it is unnecessary to pad stack allocations
smaller than some threshold. We have not experimented
with different threshold sizes but chose one that we believe
is well below the threshold needed for buffer-overflow at-
tacks.

The revised version of gcc produces a program that dis-
rupts a simple buffer overflow attack against lpr on Linux
2.0.28, Debian Linux 1.1 [4]. This attack works by giv-
ing lpr a large argument for the -C (class) command-line
switch. In the function card, lpr copies the command-
line argument into a fixed size local buffer causing an over-
flow. As a result, card transfers control to the original copy
(located in argv), which execs a shell running as root. This
attack is disrupted by changing the size of the buffer, pre-
venting card's return address from being overwritten.

These modifications have a relatively small impact on
execution-time performance. In tests of gzip and gcc
(compiled by both the modified and unmodified versions
of gcc) the differences in CPU time were negligible. Be-
cause our modifications cause a program to expand its use
of stack memory, we expected some reduction in perform-
ance, which testing on additional programs might reveal.
An important question is how much extra stack space is re-
quired for this method to be effective. In terms of static
stack space, the answer appears to be 10-15%. In the gzip
example, 17 slots exceed the 16-byte threshold (thus, quali-
fying for modification) out of a total of 125. Notably, these
17 slots consume most of the stack usage for the program
(93%). Similarly, in the case of gcc, 313 slots exceed
the threshold, out of 6183 total. The 313 slots account for
64.7% of the stack usage.

There are several parts to a buffer-overflow attack: (1)
overflowing the original buffer to gain access to a return
address, (2) transferring control to a known location con-
taining intrusive instructions, and (3) executing the intrus-
ive instructions. The stack-frame variations we described
affect the first of these but not necessarily the second. For
example, in Linux, command-line arguments passed to argv
are stored in a predictable location determined by the ker-

4



www.manaraa.com

nel and are not affected by stack-frame modifications. The
contents of argv are later copied into a stack frame (this
is the buffer that is targeted for the overflow), but the at-
tacker has the option of transferring control to the original
copy (stored in a highly predictable location). Although
our method successfully disrupts the overflow and subverts
the attack, these considerations suggest yet another possible
randomization—one that we plan to explore in future work.

5 Impact on Computer Security

Here we give a brief overview of common security prob-
lems and our assessment of which diversity methods would
be most effective against them. Unfortunately, assessing
and documenting the most common routes of intrusion is
difficult: (1) new routes of intrusion are continually be-
ing discovered, (2) old routes of intrusion are sometimes
patched, (3) there are few if any reliable statistics on suc-
cessful intrusions, and (4) there is a distinction between the
variety of intrusion methods and the frequency with which
they are exploited.

Software errors (e.g., buffer overflows, insecurely pro-
cessing command-line options, symlink errors, temp file
problems, etc.) lead to several common forms of attack.
Memory-layout variations, such as the one we implemen-
ted, would primarily affect buffer overflows. A race condi-
tion is an interaction between two normally operating pro-
grams via some shared resource (often, a file). Compilation
techniques, such as the ones we have discussed, are unlikely
to prevent race conditions. However, diversity at the level
of the shared resource would likely be effective. For con-
figuration problems (e.g., setup errors in how a service is
provided or file permission problems), unique naming of
system files would be highly effective. Denial-of-service at-
tacks are sometimes due to software errors and sometimes
due to lack of resource checking or poor policies. Thus, one
diversity technique alone is unlikely to address all denial-
of-service problems. For problems associated with insecure
channels (e.g., IP spoofing, terminal hijacking, etc.), we ex-
pect that cryptography techniques are probably more help-
ful than diversity techniques, at least for diversity generated
on a single host. Trust abuse, including key management
problems and inappropriately trusted IP addresses, could be
addressed by generating a unique profile of each computer's
behavior and using it to establish identity. A final security
problem that has been well-studied is that of covert chan-
nels. It might be possible to introduce diversity to prevent
exploitation of covert channels, although we have not stud-
ied it well enough to have specific suggestions.

Within computer security there is widespread distrust
of “security through obscurity”—for example, proprietary
cryptographic algorithms that are kept secret on the grounds
that publishing their algorithms would weaken their secur-

ity. Such distrust is warranted—proprietary cryptographic
algorithms, once revealed, often turn out to have serious
flaws. Nevertheless, it is worth noting that at the level of
whole systems, all security is ultimately based on making
some aspect of the system obscure, whether it be passwords
or private keys. Possession of a secret is the basis for grant-
ing differential access. By randomizing implementation de-
pendencies, our approach can be thought of as adding a new
level of automatically-generated “secrets” that are transpar-
ent to properly functioning code, but which misbehaving
code must possess to crack the system successfully. Fur-
ther, at the level of algorithms, our approach would actually
reduce obscurity by eliminating obscure implementation-
dependent consistencies of which the algorithm designer
was unaware and certainly did not intend, but which, once
discovered, might form the basis of an attack.

For some security applications it is important to certify
that a computer system is trustworthy, through a combin-
ation of proving formal properties about the specification
and testing and analyzing the implementation. Although
the method we propose would complicate the testing pro-
cedure, any system that stayed within its formal specifica-
tions (“in the box”) would be robust to variations outside
the box. Thus, an implementation that successfully with-
stood random variations of the sort we propose would be
more trustworthy than one that did not.

6 Conclusion

Diversity techniques such as those we have proposed
here can serve an important role in the development of
more robust and secure computing systems. They cannot,
by themselves, solve all security problems, because many
exploitable holes are created completely “within the box”
of a program functioning under the semantics of the lan-
guage in which it is written. And indeed, diversity tech-
niques may sometimes disrupt legitimate use by unmask-
ing unintended implementation dependencies (i.e., “bugs”)
in benign code. Nonetheless, the essential principles of
diversity—“avoid unnecessary consistency,” and “surround
the box with noise”—express a strategy that is likely to find
use in the computers of the future.

This approach can only be successful if it is low-cost,
having minimal impact on run-time efficiency and main-
tainability. In this paper, we have concentrated on outlining
a wide variety of possible approaches, to stimulate further
ideas and suggestions. An important area of future research
is to assess these and other ideas more systematically to de-
termine which ones are worth implementing.

5



www.manaraa.com

Acknowledgments

Over the past couple of years we have discussed the gen-
eral idea of diversity with many people and solicited their
comments and ideas for possible implementation strategies.
In particular, A. Davis, T. Knight, B. Maccabe, M. Oprea,
M. Seltzer, H. Shrobe, E. Stoltz, G. Sussman, and C. Young
have all listened with more or less open minds and made
helpful suggestions. The authors gratefully acknowledge
support from the National Science Foundation (grant IRI-
9157644), the Office of Naval Research (grant N00014-
95-1-0364), Defense Advanced Research Projects Agency
(grants N00014-96-1-0680 and N66001-96-C-8509), the
MIT AI Lab., Interval Research Corp., and the Santa Fe
Institute.

References

[1] J. B. Chen, M. Smith, and B. N. Bershad. Morph, a framework
for platform-specific optimization. Technical Report TR-04-
96, Harvard University, Division of Engineering and Applied
Sciences, Cambridge, MA, 1996.

[2] M. W. Eichin and J. A. Rochlis. With microscope and tweez-
ers: An analysis of the internet virus of november 1988. In
Proceedings of the IEEE Symposium on Research in Com-
puter Security and Privacy, Los Alamitos, CA, 1989. IEEE,
IEEE Computer Society Press.

[3] E. English and S. Hamilton. Network security under siege:
the timing attack. Computer, March 1996.

[4] V. Kolontsov. Bugtraq mailing list, Oct. 25, 1996. Linux &
BSD's lpr exploit.

[5] M. Oprea. Towards compiler-induced object code variability.
Unpublished Manuscript, June 1996.

[6] C. Young, D. S. Johnson, D. R. Karger, and M. D. Smith.
Near-optimal intraprocedural branch alignment. In Proceed-
ings of ACM SIGPLAN'97 Conference on Programming Lan-
guage Design and Implementation, (to appear).

6


